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Abstract

This paper presents some results concerning a first benchmark for the new European research code for thermal hydraulics computa-
tions: NEPTUNE_CFD. This benchmark relies on the Thorpe experiment to model the occurrence of instabilities in a stratified two-
phase flow. The first part of this work is to create a numerical trial case with the VOF approach. The results, in terms of time of onset
of the instability, critical wave-number or wave phase speed, are rather good compared to linear inviscid theory and experimental data.
Additional numerical tests showed the effect of the surface tension and density ratio on the growing dynamics of the instability and the
structure of the waves. In the second part, a code to code (VOF/multi-field) comparison is performed for a case with zero surface tension.
The results showed some discrepancies in terms of wave amplitudes, growing rates and a time shifting in the global dynamics. Afterward,
two surface tension formulations are proposed in the multi-field approach. Both formulations provided similar results. The time for onset
of the instability, the most amplified wave-number and its amplitude were in rather good agreement with the linear analysis and VOF
results. However, the time-shifted dynamics was still observed.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The European project Nuclear Reactor SIMulation
(NURESIM) aims at developing and validating a numer-
ical platform to model complex multiphase flows, rele-
vant to nuclear reactor thermal hydraulics. In this way,
the NEPTUNE_CFD code has been developed within
the framework of the EDF-CEA co-development project
with the support of AREVA-NP and IRSN. One of the
issues of NURESIM project is to set up relevant bench-
marks in order to assess the code potentials for a variety
of situations encountered in nuclear reactors. Among
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these situations, safety related flows are those that are
more complex and of great interest. One of the possible
scenarios (Fig. 1) is cold water emergency core cooling
(ECC) into the cold leg during a loss of coolant accident
(LOCA). A relevant problem occurring in this situation
is the development of wavy stratified flows which may
be single-phase or two-phase depending on the leak size,
location, and operating conditions. These instabilities
may give rise to Kelvin–Helmholtz structures which
may induce a slug situation (Wallis and Dobson, 1973;
Tailtel and Ducker, 1976). In two-phase flows situation,
the Kelvin–Helmholtz roll-up may capture bubbles that
may further condense and cause water hammers (Ansari,
1998).

The proposed benchmark aims at tackling this kind of
flows but in the case of immiscible fluids. This simplifica-
tion allows to deal with two-phase related aspects such as
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Nomenclature

F si (N m�3) volume surface tension force
Fk0!k (N m�3) volume interphase forces
H (m) channel height
L (m) channel length
g (m s�2) gravity acceleration
k (m�1) wave-number
l (m) channel width
n (–) number of phases
N (–) iteration number
R (–) residue
t (s) time
u (m s�1) longitudinal velocity
x (m) longitudinal direction
y (m) transverse direction
a (–) volume fraction
d (–) density ratio parameter

j (m�1) interface curvature
k (m) wavelength
kkk (–) FFT amplitude of the wavelength k
l (kg m�1 s�1) dynamic viscosity
q (kg m�3) density
r (N m�1) surface tension
DU (m s�1) axial velocity difference

Subscripts and Superscripts

0 initial time
1 phase 1
2 phase 2
c critical
i, j, q direction indexes
k kth phase
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surface tension, density ratio of the fluids, free surface, and
to compare both with a simple inviscid analysis (Chandra-
sekhar, 1961; Drazin and Reid, 1982) and experimental
results. However, the linear inviscid theory is valid for
the case of two fluids of similar density (Thorpe, 1969).
This problem has been tackled by Meignin et al. (2003)
with the nonlinear analysis or by Staquet (1995, 2000) with
numerical simulations of a single-phase flow. A review of
experiments of Kelvin–Helmholtz instability with large
density differences can be found in Funada and Joseph
(2001). Concerning the case of two-phase flows with heat
and mass transfers, many studies can be found in the liter-
ature and they are mostly devoted to the modeling or mea-
surement of interfacial transfers (Lioumbas et al., 2005;
Kim et al., 1985; Biberg and Halvorsen, 2000). Moreover,
due to the additional difficulty related to the nature of
Fig. 1. Cold water emergency core cooling (ECC) into th
the flow (liquid water–water steam) and the associated
modeling issues, this kind of study cannot be used as an
objective benchmark to assess the code potential. A possi-
ble benchmark could be that of Hou et al. (2001) who ana-
lyzed two inviscid fluids of equal density in zero gravity
conditions. However, this case is not realistic, and an
experimental background is missing. Therefore, the pro-
posed benchmark is the same as that planned in Tiselj
et al. (2004) and relies on the work of Thorpe (1969).
Indeed, this work is very convenient for the targeted bench-
mark, because experimental data and matching theoretical
results are available for comparison to computational fluid
dynamics (CFD) simulations. Recently, Bartosiewicz and
Seynhaeve (2006) set up the test case by conducting a first
comparison between experimental data, theoretical analy-
sis and a commercial CFD package.
e cold leg during a loss of coolant accident (LOCA).



Fig. 2. Description of the Thorpe experiment.
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2. Description of the Thorpe experiment and results

2.1. Description of the experiment

The Thorpe experiment (Thorpe, 1969) consists in a
glass channel containing two immiscible fluids of different
but similar densities (Fig. 2). The fluids were water (fluid
2 at the bottom) and a mixture of tetrachloride and com-
mercial paraffin (fluid 1 at the top) with the following
properties:

q1 ¼ 780 kg=m3; l1 ¼ 0:0015 Pa s

q2 ¼ 1000 kg=m3; l2 ¼ 0:001 Pa s
ð1Þ

Concerning the geometry parameters, the following dimen-
sions have been used in the experiment:

L ¼ 1:8 m; H ¼ 0:03 m; l ¼ 0:1 m ð2Þ
Initially, the tube was completely filled with the fluids.
Both fluid layers have the same initial height
h1 = h2 = 1.5 cm. The surface tension was estimated to
be r = 0.04 N/m by measurements with 10% accuracy;
however, Thorpe (1969) claimed that errors due to this
uncertainty are small in calculations. After allowing the
fluids to settle, the channel was sharply tilted such that
sina = 0.072. The resulting motion is a wavy flow giving
rise to Kelvin–Helmholtz instabilities. The motion of the
interface is recorded from the side and the flow is also
filmed from above by means of a mirror. From the theo-
retical and computational point of view, the tube width is
large compared to the thickness of the shear layer, justify-
ing a two-dimensional approach.
Fig. 3. The Thorpe experiment – Exa
2.2. Main experimental results

For the operating conditions mentioned above, Thorpe
(1969) took 10 pictures of the interface, separated by
0.059 s (examples in Fig. 3). The first picture is taken at
a time when onset of the instability has been observed.
This time is 1.88 ± 0.07 s and includes half the time taken
to tilt the channel (about 0.25 s). In his paper, Thorpe
claims that this uncertainty might be even larger. The
most unstable wave number is estimated with the distance
between two wave crests (Fig. 2). The measured value is
kc = 2.5–4.5 cm, the uncertainty comes from the different
critical wavelengths observed under the same operating
conditions. After the onset on the instability Thorpe
observed the growth of the waves for approximately
0.52 s. Beyond this time, this growth was almost stopped
and the roll-up of these waves started. At this time the
estimated amplitude of the waves was about 2a = 6–
8 mm (Fig. 2). The downward wave speed was also mea-
sured to be 2.6 cm s�1. As far as possible, all these exper-
imental data will be compared to the numerical
simulations.
3. Linear inviscid analysis

In this section, we recall some important results of lin-
ear-hydrodynamics instability theory, which are of interest
to determine criteria for the occurrence of instabilities, and
the associated parameters. For a more complete presenta-
tion, the reader is referred to Drazin and Reid (1982).

Let us consider an inviscid fluid flow such as

� h2 < y < 0
q ¼ q2

u2 ¼ �DU=2

�

0 < y < h1

q ¼ q1

u1 ¼ DU=2

� ð3Þ

with h1 = h2. This parallel flow is assumed to be a solution
of Euler equations upon which is superposed a small per-
turbation proportional to exp i(kx + xt). In this latter
equation, k is real, and it is the longitudinal wave-number
of the perturbation; x is complex where the real part xr is
the phase speed and the complex part xc is the temporal
growth rate of the perturbation. Once the two-dimensional
mples of pictures of the interface.
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Fig. 4. F as a function of k (a) and critical velocity and time of onset of instability (b).
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Euler equations are linearized, the following dispersion
relation can be obtained for x (Chandrasekhar, 1961):

x ¼ k
DUðq2 � q1Þ
2ðq2 þ q1Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rk3 þ gkðq2 � q1Þ

q2 þ q1

tanhðkhÞ � k2ðDUÞ2q1q2

ðq2 þ q1Þ
2

s
ð4Þ

The system is unstable when xc 5 0, providing a condition
for the minimum (critical) velocity difference:

ðDUÞ2 > q1 þ q2

q1q2

rk þ g
k
ðq2 � q1Þ

� �
tanhðkhÞ,F ð5Þ
Therefore, the minimum of the function F gives the most
unstable wave number kc. This is shown in Fig. 4a for dif-
ferent values of surface tension.

A limiting case of Eq. (5) can be examined correspond-
ing to an infinite height of the channel. In that case, the
function F vanishes for the following critical wave-number:

kc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðq2 � q1Þ

r

r
ð6Þ
Moreover, the time-dependent solution of the problem may
be easily derived if closed-end and viscosity effects are ne-
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glected (Thorpe, 1969), and it gives the following velocity
field:
U ¼
u1 ¼ ðq2�q1Þh2g sin a

q1h2þq2h1
t; 0 < y < h1

u2 ¼ � ðq2�q1Þh1g sin a
q1h2þq2h1

t; �h2 < y < 0

8<
: ð7Þ

From this equation, it possible to estimate for a given
U = DUc/2 corresponding to the minimum of the function
F, the time of onset of the instability t0. In Fig. 4b, the crit-
ical velocity difference DUc and the corresponding time t0

are shown as a function of surface tension.
3.1. Application to the trial case: The Thorpe experiment

In the case of matching geometrical and operating
boundary conditions realized in Thorpe’s experiment
(Thorpe, 1969), this critical wave number is kc = 229 m�1

(Fig. 3): this gives a critical wavelength kc = 2.7 cm and a
critical velocity difference DUc � 0.2 m/s. In his paper,
Thorpe claims that the critical velocity and therefore the
time of onset of instability predicted by the theory may
be underestimated by as much as 10%, because an abrupt
transition in velocity is assumed at the interface. However,
the minimum of the function F is relatively flat (Fig. 4a),



Fig. 6. Computational domain.
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explaining the reason for several possible critical wave
numbers. Moreover, the critical wave number determined
by Eq. (6) for the Thorpe experiment is equal to
232.3 m�1 which is very close to 229 m�1. This means that
the height of the channel used in the Thorpe’s experiment is
large enough for considering that the height has no influ-
ence on the instability.

The benchmark conditions of the trial case are also
stressed on the graph of Fig. 4b: for these conditions, the
time of onset of the instability is about t0 = 1.2 s for a crit-
ical velocity slightly higher than 0.2 m/s. Thorpe found that
these results have to be corrected by 10% to take into
account the corrections due to viscosity and accelerated
flow. For instance, Thorpe evaluated the theoretical time
t0 = 1.5–1.7 s including half the time to tilt the channel.

3.2. Effect of surface tension and density ratio

Furthermore, Fig. 4a and b also depicts the influence of
the surface tension on the critical velocity difference, the
wave number and the time of onset of instability. As sur-
face tension is decreased, the minimum velocity required
to get instability is also decreased which means that the
time for the onset of these instabilities should be shorter
as well. In addition, the minimum of F becomes less shar-
per as r is decreased, giving more possibilities of critical
wave numbers, and these critical wave numbers increase:
this means that the wavelength decreases when the surface
tension at the interface decreases. However, according to
the linear inviscid theory, in the case of r = 0 N m�1, the
wave instabilities should appear at the beginning of the
transient (t0 = 0 s) as shown in Fig. 4b, but this theory fails
when the surface tension tends to zero.

The effect of the density ratio of the fluids can also be
investigated from Eqs. (5) and (7). This has been done
for different density ratios defined by the parameter d:

d ¼ q2 � q1

q2 þ q1

ð8Þ

The results are summarized in Fig. 5a and b for the three
values d = 0.12, 0.33 and 0.82. These values correspond,
respectively, to three different densities of the upper fluid,
i.e., 780, 500 and 100 kg/m3, for the same density of the
fluid at the bottom (1000 kg/m3).

According to the linear inviscid theory, Fig. 5a and b
shows that the critical wave number as well as the time
of onset of the instability increase when the parameter d
decreases. But it must be underlined that this theory is only
valid for d� 1 (Thorpe, 1969). Thus, the results shown in
Fig. 5a and b must be taken very carefully.

4. Modeling approach

4.1. The VOF approach

The conservation equations governing the fluid flow in
the channel are of the incompressible, unsteady, and two-
dimensional form. Furthermore, as the point of interest is
the formation of Kelvin–Helmholtz instabilities up to their
roll-up, and the maximum matching Reynolds Number is
about 183 (Thorpe, 1969), only the laminar form of these
equations is solved in the present work. The channel is
assumed adiabatic and no thermal energy is exchanged
between flows, so the energy equation is not solved. As
far as two immiscible fluids are concerned, the Euler–Euler
VOF technique is suited to track the interface. The govern-
ing equations can therefore be written (for n = 2):

oakqk

ot
þ o

oxi
ðakqkuiÞ ¼ 0 for k 2 ½1; n� 1� ð9Þ

Xn

k¼1

ak ¼ 1 ð10Þ

oðquiÞ
ot
þ o

oxj
ðquiujÞ ¼ �

oP
oxi
þ osij

oxj
þ qgi þ F Si ð11Þ

sij ¼ l
oui

oxj
þ ouj

oxi

� �
ð12Þ

where Fs accounts for the surface tension effect (Brackbill
et al., 1992) and its formulation is detailed in Section
5.2.2; the mixture properties are evaluated as q ¼

P
akqk

and l ¼
P

aklk. This set of equations is solved with the
commercial code FLUENT.

The interface treatment is accomplished via a geometric
reconstruction scheme. If a given cell is completely filled
with one or the other phase, no special treatment is per-
formed. However, if the interface is included within a cell,
it is represented by a linear slope by using piecewise-linear
interpolation. The first step in this reconstruction is com-
puting the position of the linear interface in the cell, based
on the volume fractions and their derivatives. The second
step is calculating convective fluxes through each face of
the cell using the computed interface and velocities (normal
and tangential) on the face. The final step is to update vol-
ume fractions based on the balance of fluxes calculated
during the previous step.

The pressure–velocity coupling is realized by using the
pressure-implicit with splitting of operators (PISO) algo-
rithm (Issa, 1986) which ensures that the corrected veloci-
ties satisfy both the continuity and the momentum
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equations after one or more additional loops. This algo-
rithm takes more CPU time per solver iteration than SIM-
PLER or SIMPLEC, but it can dramatically decrease the
number of iterations required for convergence in transient
problems. Spatial discretization is achieved by a QUICK
scheme with a staggering technique for the pressure term
in the momentum equation. The time discretization uses a
first order implicit scheme for flow equations, while an
explicit time marching technique is used for the volume
fraction equation (Eq. (9)). For the validation calculations
(the Thorpe experiment), the global time step is time-
adapted in order to ensure a maximum CFL = 1. However,
for comparison with NEPTUNE_CFD a constant time step
was used in order to obtain results at same times, and ensur-
ing for a maximum CFL = 1 during the computation.

The resulting system is then solved using a point implicit
Gauss–Seidel solver in conjunction with an algebraic multi-
grid method.

4.2. The multi-field approach: NEPTUNE_CFD

In the NEPTUNE_CFD code, the general compressible
Eulerian multi-field balance equations are solved. In the
case of two components, this two-field/one pressure formu-
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lation is actually the classical two-fluid model and can be
written for the kth field:

oakqk

ot
þ o

oxi
ðakqkuk;iÞ ¼ 0 for k 2 ½1; n� 1� ð13ÞX

k

ak ¼ 1 ð14Þ

oðakqkuk;iÞ
ot

þ o

oxj
ðakqkuk;iuk;jÞ

¼ �ak
oP
oxi
þ oaksij

oxj
þ akqkgi þ F k0!k ð15Þ

sij ¼ l
oui

oxj
þ ouj

oxi

� �
� 2

3

ouq

oxq
dij ð16Þ
Consequently, NEPTUNE_CFD solves a complete set of
equations for each phase (k � 1 for the continuity) while
one momentum equation is solved for the mixture in the
VOF method. The term Fk 0!k may include drag models
to couple momentum equations. In this work, no specific
friction model is included but rather the implicit continuity
condition. However, the term Fk 0!k will include a specific
surface tension formulation for each phase as a coupling
term. Indeed, NEPTUNE_CFD, as many multi-field
codes, does not usually include surface tension effect since
fully separated flows calculations are not in the spirit of
such an approach. The detail of the surface tension formu-
lation may be found in Section 5.2.2.
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The time integration uses a splitting approach. In a first
step, an implicit velocity prediction is made neglecting the
volume fractions and pressure variations. However, this
prediction is realized from a first sub-step where the
momentum equation containing only explicit components
(pressure and volume fraction variations) is solved. Using
this predicted velocity, several cycles are achieved by solv-
ing sequentially the coupled system of energy–volume
fraction–pressure equations. This system is solved using
sub-cycles until convergence. Velocities are updated at each
sub cycle. The second step is the final velocity correction in
a similar way in comparison to the SIMPLER algorithm by
using the implicit part of the momentum equation. The
energy–volume fraction–pressure sub-cycles are stopped
when mass and energy conservations are ensured. The
use of an elliptic form for the pressure correction equation
provides the elliptic feature of the algorithm.

Spatial discretization is achieved by a central difference
scheme. All variables are co-located, a gradient reconstruc-
tion method providing consistency and precision for diffu-
sive and convective fluxes.

4.3. Domain, boundary and initial conditions

The computational domain is two-dimensional and the
dimensions match with those of Thorpe’s experiment
(Thorpe, 1969). The channel is taken horizontal, but the
gravity vector is inclined to model real experimental condi-
tions (Fig. 6). For this geometry, three different orthogonal
meshes have been tested in order to check grid
convergence:

• MESH 1: 1830 · 30;
• MESH 2: 2588 · 42;
• MESH 3: 3660 · 60.

In the next section, it is shown that MESH 1 was taken
for all the simulations.

All boundary conditions are walls with no-slip condi-
tion. At t = 0, each fluid fills half the height of the channel,
so that the interface is initially located along the middle line
of the domain. Initially, all velocities equal zero and the
pressure field is uniform and equal to the reference pressure
(atmospheric pressure): this pressure field does not match
with operating conditions since the channel is already tilted
in simulations. To ensure a good initial pressure field, a
small time (t = 1 · 10�5 s) step is performed in order to
make the pressure converge toward its hydrodynamics dis-
tribution. At this time, the computation can be started with
the required time step.

4.4. Numerical accuracy and convergence

The criterion for assessing convergence was primarily
based on the mass residues. In FLUENT, this criterion is
the rate of mass creation at iteration N and can be defined
as
RN ðaÞ ¼
XNCEL

i¼1

j _mi
in � _mi

outjN ð17Þ

where _mi
in and _mi

out are the total inlet mass flow rate pene-
trating and escaping a cell i, respectively.

In addition, the convergence is monitored and assessed
following a scaled residual criterion:

RN ðaÞ
R5ðaÞ

< 1� 10�4 ð18Þ

In NEPTUNE_CFD, the volume fraction–pressure–energy
cycles stop once the volume conservation holds in a sub-
step:

max
I2NCEL

j1�
X

k

akðIÞj
 !

< 10�5 ð19Þ

This criterion is very severe as it applies to a maximum va-
lue over the whole domain. In order to assess grid conver-
gence, the three different meshes have been tried out with
FLUENT. This independency was then checked in NEP-
TUNE_CFD by comparing the selected mesh with the next
finer mesh, but for conciseness reasons only the results
comparing the three meshes are shown. Finally, the chosen
mesh was further used both with FLUENT and NEP-
TUNE_CFD. Fig. 7a illustrates the results in terms of ra-
dial profiles of longitudinal velocity component at t = 2 s
for the three tested meshes. At this time, the instability is
well established; the velocity difference DU � 0.35 m/s
is largely higher than the theoretical velocity DUc � 0.21
m/s. The three tested meshes do not exhibit significant dif-
ferences, while the CPU time is multiplied by 4 between
MESH 1 and MESH 3. For the finer grid, the capture of
the velocity gradient through the shear layer is slightly im-
proved (Fig. 7a). Fig. 7b depicts the Fourier analysis of the
interface (a = 0.5) for MESH 1 and MESH 3: overall re-
sults show that MESH 1 contains the essential spectral
information and can be sufficient for this study. Therefore,
the coarser mesh MESH 1 was used for all the simulations
presented in this paper.

5. Results and discussion

5.1. The Thorpe experiment: the VOF approach

5.1.1. The trial case

Since Thorpe’s experiment accounts for the surface ten-
sion effect, we decided to create a first trial case in order to
check the ability of the VOF model incorporated in FLU-
ENT to model this challenging experiment. Furthermore,
this validation provides more rigorous basis for the further
comparisons between FLUENT and NEPTUNE_CFD.
Fig. 8a and b shows the Fourier analysis of the interface
between t = 1.5 s and t = 2.4 s. Fourier transforms have
been obtained with a FFT algorithm and a running average
upon five values has been performed. The dash–dot curve
represents an additional running average for each FFT.



Table 1
Comparison between theory, the Thorpe data and CFD (FLUENT)
results

Parameter Theory Theory
(corrected)
(Thorpe)

Thorpe FLUENT

kc 229 m�1 320 m�1 140 m�1–
251 m�1

142 m�1

kc 2.7 cm 1.96 cm 2.5–4.5 cm 4.4 cm
t0 1.2 s 1.5–1.7 s 1.88 s ± 0.07 s 1.86 s
DUc 0.21 m s�1 0.22 m s�1 – 0.28 m s�1

mwaves 2.38 m s�1 – 2.6 m s�1 2.5 m s�1
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Fig. 8a illustrates that the time of onset of the instability is
1.6 s < t0 < 1.9 s because the growing rate seems to become
significant between these values. A more exact value of t0 is
evaluated to be t0 = 1.86 s from Fig. 12. This is in accor-
dance with the Thorpe observation t = 1.88 s including half
the time to tilt the channel (t0 = 1.63 ± 0.07 s). Moreover,
the critical wavelength matching the most unstable wave-
number can be evaluated at kc � 44 mm (kc = 142.8 m�1)
compared to the Thorpe value kc = 25–45 mm
(kc = 197 ± 58 m�1). The computed values agree well with
the Thorpe observations, because the range of possible crit-
ical waves is quite wide (Fig. 8) (kc = 25–55 mm) in accor-
dance with results found in Fig. 4. In addition, it is also
observed that this critical wavelength does not much
change significantly with time as observed by Thorpe and
remains at kc � 45 mm. However, Thorpe observed the
growing of the wave was almost stopped at t � 2.4 s.
Fig. 8b shows that the growing is slows down between
t � 2.3 s and t � 2.4 s. Fig. 9 exhibits the location of the
physical interface between t = 1.7 s and t = 1.9 s. The
crest-to-crest distance allows to determine the velocity of
the wave moving downward. The computed distance for
this 0.2 s time period is evaluated to be 0.5 cm, which gives
a velocity of u � 2.5 cm s�1: Thorpe evaluated this velocity
at u � 2.6 cm s�1.

For summarizing Table 1 presents the different results
obtained from CFD in comparison to the linear inviscid
theory, corrections of the theory proposed by Thorpe,
and the experimental results obtained by Thorpe. It is clear
that the time of onset of instabilities, the wave speed, and
also the critical velocity difference (obtained at t0) are in
rather good agreement with both theory and Thorpe data.
Nevertheless, the critical wavelength is overestimated in
comparison with the linear theory for both CFD results
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Fig. 9. Physical locatio
and the Thorpe data. In addition, corrections should lower
the theoretical value. This discrepancy may be attributed to
the finite amplitude effect that could be important at the
early stage of wave development and not taken into
account in the current theory. Moreover, Thorpe suggests
that Kelvin–Helmholtz instability is probably dominant
but the occurrence of Tollmien–Schlichting instability
could be envisaged at the interface.
5.1.2. Effect of surface tension
In order to assess the effect of surface tension on the

development of waves, a case with zero surface tension
has been performed. From the linear inviscid theory, the
most unstable wavelength should decrease as surface ten-
sion is decreased (Fig. 4a). In addition, the minimum of
function F (Fig. 4a) becomes more and more flat, which
means that the number of critical wavelengths increases;
for zero surface tension infinity wave-numbers are pre-
dicted. However, the theory becomes inaccurate as the sur-
face tension decreases (Thorpe, 1969) and should be taken
with care, especially at zero surface tension. Fig. 10 shows
-0.07 -0.06 -0.05
x (m)

Δx = 0.5 cm

n of the interface.
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the spectral analysis of the interface for r = 0 N m�1. For
this case, the results revealed a growing wavy flow earlier
in the computation with a smaller wavelength than the pre-
vious case (r = 0.04 N m�1). In addition, there is not only
one dominant wave-number along time, but several critical
wave-numbers may be observed. Indeed, at early stages,
the critical wavelength kc � 15 mm and kc � 22 mm can
be observed. Afterward, the growing of the first one is
stopped at t � 1.7 s, while the growing of kc � 22 mm slows
down at t � 1.7 s and the wave disappears at t � 1.8 s
(Fig. 10). From t � 1.7 s, when the growing of the domi-
nant waves slows down, it gives rise to the growing of
new waves with higher wavelength (Fig. 10). Fig. 10 also
shows that this wave grows at kc � 37 mm, which is of
the same order of magnitude as is the case with surface ten-
sion (kc � 45 mm). However, the amplitude of the most
Fig. 11. Fields of volume fraction for
amplified wave-number is largely different from that
obtained with surface tension (Fig. 8a), the ratio being lar-
ger than 2 (Figs. 8a and 10).

This mechanism of multiple wave-numbers may be
attributed to an energy transfer between waves structures,
which can pair each other or collapse to give rise to bigger
structures with a larger wavelength. Therefore, even
though the general trends given by the linear theory are
assessed, the growing dynamics along the time may only
be predicted by simulations.

Fig. 11 shows the fields of volume fraction for the two
surface tensions and for different times. It is obvious that
the growing dynamics starts earlier for r = 0 N m�1. More-
over, with no surface tension, wavy structures seem more
likely to roll up and be brittle. This effect on the waves
structure could not be predicted by the linear theory. The
r = 0 N m�1 and r = 0.04 N m�1.
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offset in terms of times development of the structure can be
more quantitatively evaluated with Fig. 12 that illustrates
the integral of the previous FFT as a function of time. In
the case with zero surface tension the time range of the plot
is more limited due to the waves collapse, preventing a cor-
rect interface representation. The slope of the FFT integral
can be understood as an image of the growing rate of the
interface. From this figure, it is clear that the growing
dynamics starts earlier as surface tension decreases, in
accordance with the trend given by the linear theory. In
addition, the different growing rates are roughly the same
(same slope) (Fig. 12) as the surface tension is set to zero.
The surface tension the does not have a significant effect
on the growing rate, but rather on the time of onset of
instability development and waves amplitude. These flow
features cannot be easily deduced from the theory.

5.1.3. Effect of density ratio

In order to assess the influence of density ratio between
the two fluids, two other cases have been simulated with
FLUENT. In his paper, Thorpe (1969) noticed that the
theory and its correction to take into account a smooth
profile tends to underestimate t0 and D Uc while the critical
wave-number kc still remains well predicted; he defined a
Fig. 13. Fields of volume fractions for
parameter d (Eq. (8)) to evaluate this effect. In our case,
d = 0.33 and d = 0.82 have been tested for both
r = 0.04 N m�1 and r = 0 N m�1. Fig. 13 shows the fields
of volume fraction for each density ratio and surface ten-
sion at t = 1.5 s. Increasing density ratio seems to have
the same effect of decreasing the surface tension in terms
of the time of onset of instabilities, but in this case struc-
tures do not have the same brittle feature. This means that
by increasing the density ratio, smaller t0 are obtained: it is
clear from Fig. 13. In addition, by comparing the fields in
Fig. 11 for both surface tensions, it is also clear that
increasing density ratio provides a smaller wavelength or
a larger wave-number. However, even though larger
wave-numbers are predicted by the linear theory
(Fig. 5a), the theory also predicts a larger t0. In this case,
numerical results and linear analysis are in contradiction.
One possible explanation could be the that theory is valid
for values d small to negligible compared to the unity.

In addition, at average density ratio (d = 0.33) the sur-
face tension effect is visible because the structure tends to
easily roll up for r = 0 N m�1. In addition, at high-density
ratio (d = 0.82), no significant differences can be observed
according to the value of surface tension; at this ratio,
the two fluids are almost separated. In this case, the
different density ratio at t = 1.5 s.
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dynamics is primarily dominated by density ratio. Further
test should be performed to study the comparative effect of
surface tension and density ratio to evaluate the different
conditions where one or the other parameter dominates
the dynamics and where both effects are in competition:
this is out of the scope of the paper.

5.2. Comparison multi-field/VOF

5.2.1. A first study without surface tension

Since it is not in the spirit of a two-fluid model, the sur-
face tension effects are not originally implemented in NEP-
TUNE_CFD. Consequently, FLUENT and NEPTUNE_
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Fig. 14. FFT analysis: FLUEN
CFD have to be firstly compared in a theoretical case with-
out surface tension. Moreover, this study allows to evalu-
ate NEPTUNE-CFD without any source term
implemented which potentially could provide additional
discrepancies compared to FLUENT according to the
way the surface tension is included.

In this case, from the linear inviscid theory, the mini-
mum of function F in Eq. (5) tends to infinity and becomes
leveled, which means that a large range of critical smaller
(than that for higher surface tensions) wavelengths are pos-
sible. In addition, with no surface tension the inviscid the-
ory predicts a zero critical velocity and a time for onset of
instabilities t0 = 0 s. Fig. 14 illustrates the spectral analysis
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of the interface at several times between t = 1.1 s and
t = 1.8 s. In the case of NEPTUNE_CFD, the location of
the interface has been performed by interpolation during
post-processing in order to determine the position of the
a = 0.5 isovalue. Compared to the results with
r = 0.04 N m�1 (Fig. 8), Fig. 14a clearly indicates that
the initial critical wavelength is much smaller for
r = 0 N m�1. Furthermore, contrary to what is observed
in Fig. 8, the most critical wavelength changes along the
time: at initial stages, two modes seem to be excited
k � 15 mm and k � 22 mm (Fig. 14a), while one critical
wave-number is observed for all times for r = 0.04 N m�1

(Fig. 8). Also, Fig. 14a shows that the time for onset of
the instability is smaller for r = 0 N m�1: for instance the
FFT modulus, which is an image of waves amplitude, is
clearly larger for t = 1.1 s and r = 0 N m�1 than for
t = 1.5 s and r = 0.04 N m�1 (Fig. 8a). From these obser-
vations, VOF results seem to be in accordance with the
conclusions of the linear theory. For this approach, as pre-
viously noted, two initial wave-numbers are excited from
t = 1.1 s. The first one (k � 15 mm) grows until t = 1.7 s
(Fig. 14a) and decreases beyond this time. The second
mode (k � 22 mm) grows farther until t = 1.8 s even if this
growing is slows down between t = 1.7 s and t = 1.8 s
(Fig. 14a). At these times, another mode is grows and will
become dominant (k � 37 mm) at t = 2 s.

For NEPTUNE_CFD, the global dynamics is qualita-
tively the same but some differences can be observed
(Fig. 14b). For the multi-field approach (Fig. 14b), there
is only one dominant mode k � 15 mm that grows until
t = 1.4 s. Beyond this time, the modulus of this mode
decreases and gives rise to the growing of a second critical
wavelength k � 37 mm, which still grows at t = 1.8 s
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(Fig. 14b). One may notice that the latter mode is also
the dominant mode for FLUENT but from t = 2 s
(Fig. 14a). In addition, the modulus of this mode is larger
for NEPTUNE_CFD.

Fig. 15 represents the integral of previous FFT as a
function of time for both FLUENT and NEP-
TUNE_CFD. The slope of this curve may then be
interpreted as an image of the waves growing rate.
Fig. 15 clearly demonstrates the different growing
dynamics between both approaches. For the VOF
results, the first growing stage is relatively slow until
1.5 s and increases later. For the two-fluid approach
the first stage is stiffer until 1.6 s. With time, the differ-
ence in terms of growing rates (slope) tends to level
out even though growing rates provided by NEP-
TUNE_CFD remain globally larger over the whole time
range. The dynamics is then shifted to lower times for
NEPTUNE_CFD and it is quicker.

Fig. 16 illustrates an example of the axial velocity pro-
files plotted along a radial line x = 0 for t = 0.9 s (a) and
t = 2.0 s (b) obtained from FLUENT and NEP-
TUNE_CFD. For each time, the global shapes of the pro-
files are in good agreement. However, some discrepancies
can be observed in high gradient regions (interface, walls),
especially near the interface. This discrepancy comes from
the difference in the waves amplitudes and wavelength cal-
culation; and then in the different interface location given
by both codes. In addition, at t = 2.0 s (Fig. 16b), a differ-
ence of about 7.5% is observed in the peak velocity because
the waves have grown and have more influence on the core
flow upside and downside of the interface; the influence
was negligible for t = 0.9 s where waves amplitudes were
small.
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5.2.2. Implementation of surface tension in a multi-field

model

In order to achieve a more relevant assessment of NEP-
TUNE_CFD to compute wavy stratified flows, the imple-
mentation of surface tension effects is required. In the
most general view of a full-multi-field approach each phase
may have its own properties, velocities, temperature and
pressure fields. Velocity differences can be induced for
instance by density differences. Temperature differences
may be induced from a time lag of energy transfer between
phases at the interface as thermal equilibrium is reached.
Finally, pressure none-equilibrium may come from surface
curvature between phases.
Source terms can then be added to model interactions
between the fields. In a single-field approach under thermal
equilibrium, velocities are assumed equal and friction terms
(drag) are assumed equal and opposite in sign. Since a single
pressure field is supposed, an extra source term is required to
model surface tension at the interface. This method is used
in the VOF technique. Surface tension which is actually a
linear force or a surface energy is modeled as a source term
F si in the momentum equation (Eq. (11)). Therefore, the ori-
ginal formulation is cast in terms of a volume force acting in
the cells containing the interface. The detailed derivation of
this volumetric force can be found in Brackbill et al. (1992).
In Eq. (11), this term is written for the direction i:
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F si ¼ ðrj 	 rakÞi ð20Þ

where r and j represent the surface tension coefficient and
the surface curvature. The curvature of the interface shape
j is defined in terms of the divergence of the unit normal
vector:

j ¼ r 	 n̂ with n̂ ¼ n
jnj ð21Þ

n ¼ rak ð22Þ

In NEPTUNE_CFD a multi-field but a single pressure
assumption is used. In this framework, surface tension ef-
fects should be included as additional source terms. The
continuum surface force (Brackbill et al., 1992) is used in
the same spirit of the VOF approach. The curvature is cal-
culated numerically by applying a smoothing method
based on iterative geometric projections. The numerical
parameters of the method have been adjusted from several
basic test cases (sphere, ellipse and cylinder) to analytically
validate the shape of the interface.

However, the volume force is split between the two
phases occupying the cell:

F k
si
¼ ðbkrj 	 rakÞi ð23Þ

where bk is an averaged factor for the phase k that must
satisfy the following necessary condition:X

k

bk ¼ 1 ð24Þ

This condition ensures consistency when kinetic equilib-
rium is assumed to derive the single mixture momentum
equation since $a1 = �$a2. Two different models have
been tested for the coefficient bk. The first approach (mass
formulation) is based on the fact that the surface tension
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source term for a cell is distributed between the two phases
proportionally to the average mass in the cell:

bk ¼
akqkP

aiqi
ð25Þ

The second approach (volume formulation) is based on a
volume averaging in the cell:

bk ¼ ak ð26Þ

The correctness of the implementation has been checked by
calculating the pressure jump across a spherical bubble,
which can be analytically calculated by DP = 2r/R. These
two approaches have also been compared on the basis of
the FFT analysis of the interface obtained during the time
of the simulation of the Thorpe experiment (Fig. 17). As
far as the wave dynamics is concerned, both formulations
gave very similar results, so only results with the mass for-
mulation have been compared to VOF. However, for very
high-density ratios, both formulations should be carefully
assessed.

Fig. 18a and b presents the results obtained with NEP-
TUNE_CFD with the implementation of surface tension
mentioned above (mass formulation). The dash–dot lines
represent running averages as illustrated in Fig. 8a and b.
These results should be compared to those obtained by
the VOF method (Fig. 8a and b) and also those obtained
by NEPTUNE_CFD in the case without surface tension
(Fig. 14b). From the time range 1.5–2 s, a dominant wave
grows for kc � 33 mm. During this period, the same FFT
given by FLUENT did not provide clear results (Fig. 8a),
because the maximum was roughly located at kc = 45 mm,
but the FFT peaks were wider in the range of kc = 25–
55 mm. The Thorpe observations were in the range of
kc = 25–45 mm. In addition, at t = 1.5 s, the amplitude of
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Fig. 18. Spectral analysis of the interface. The Thorpe experiment with surface tension implemented in NEPTUNE_CFD.
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the critical wave-number given by NEPTUNE_CFD
(Fig. 18a) is twice the value provided by FLUENT
(Fig. 8a): the initial growing rates are then very different
in both codes. At later times between 2 and 2.4 s, the crit-
ical wave-number provided by NEPTUNE_CFD is shifted
at kc � 43 mm up to 2.3 s (Fig. 18b), which is roughly the
value given by FLUENT over the total observed time
range (kc � 45 mm). However, from t = 2.3 s, a mode at
kc � 65 mm grows and tends to become dominant at
t = 2.4 s and later. The growing of the mode kc � 45 mm
then stops at this time, which is in agreement with Thorpe
observations. This feature was not observed in FLUENT
where the same critical wave-number kc � 45 mm still
grows for this time range (Fig. 8b). Moreover, the ampli-
tude of the most amplified wave-number at kc � 45 mm
predicted by both codes (Figs. 8b and 18b) is almost the
same contrary to the initial growing stage 1.5–2 s. This
result was not observed in the case of zero surface tension.
Results with surface tension appear to be in closer agree-
ment between both methods than those obtained without
surface tension. In the latter case, other terms that are
not explicitly modeled in NEPTUNE_CFD such as inter-
phase drag could play a more important role.

These observations may be understood by the compari-
son of the growing rates. Fig. 19 illustrates the different
growing rates obtained with and without surface tension
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by both approaches. As previously noted, this figure shows
that surface tension do not have a significant effect (for a
given approach) on the different growing rates (slopes)
but rather on the time shifting of the dynamics. Also, it
is clearly shown that the dynamics starts earlier with no
surface tension in both cases. However, for the case with
surface tension, both growing rates are similar beyond
the initial growing stage and up to t = 2.3 s: the curves
are mainly time shifted contrary to the case without surface
tension where the growing rates were even different along
the whole time range.

From this time (t = 2.3 s), the growing rate predicted by
NEPTUNE_CFD significantly decreases compared to that
provided by FLUENT: this is observed in Fig. 18b where
the amplitude of the most amplified wave at kc � 45 mm
is shown decreasing. This explains why the waves ampli-
tude obtained by the VOF method could take back its
delay and reach roughly the same value beyond t = 2.3 s.

The time of onset of the significant growing is estimated
to be t0 = 1.67 s for NEPTUNE_CFD compared to
t0 = 1.86 s for FLUENT which is in rather good agreement
with Thorpe’s observations and linear analysis (Table 1).
This time shifting could also explain why a new critical
wave-number rises at t = 2.4 s for NEPTUNE_CFD
(Fig. 18b), the dynamics predicted by FLUENT being late
(Fig. 8b). However, this point should be addressed and
other possible causes such as the implementation of differ-
ent drag terms between phases should be tried out.

Finally, if these results are compared to those obtained
by the same multi-field approach without surface tension
(Fig. 14b), the same conclusion as the VOF case can be
drawn: the surface tension does not have a significant effect
on the most amplified wave-number (kc � 33–37 mm for
t = 1.8 s, Figs. 14b–18a), but rather on its amplitude. As
previously noted for the VOF case, the amplitude of this
most amplified wave-number is more than two times larger
for the case without surface tension (at t = 1.8 s kkck � 0.2
in Fig. 14b, while kkck � 0.07 at t = 1.8 s in Fig. 18a).

6. Concluding remarks

In this paper, we present first results concerning the
assessment of NEPTUNE_CFD, a new European research
code for modeling two-phase flows relevant to nuclear
safety. The proposed benchmark, relevant to a pressure
thermal shocks (PTS) scenario, relies on the Thorpe exper-
iment to characterize the wavy dynamics of two immiscible
fluids. This is a rather good challenge for NEP-
TUNE_CFD, because the two-fluid approach is not the
most suitable one for the modeling of free surface flows
compared to VOF. Nevertheless, this approach has to be
used in a PTS scenario because of the wide variety of flows
encountered (impinging jets, bubbly flows, wavy, etc.).

The first results showed that FLUENT is able to provide
rather good results compared to experimental data of
Thorpe. Moreover, these tests allowed to highlight the role
of the surface tension and density ratio on the wave struc-
ture and development. Those results were in accordance
with the trends given by the linear analysis, but were able
to provide more details on the growing dynamics. For
instance it was observed that the surface tension has no sig-
nificant effect on the most amplified wave-number but
rather on its amplitude and the global dynamics. However,
some results concerning the effect of the density ratio were
in contradiction with the theory that becomes limited
according to the value of d.

Afterward, both the VOF and the two-fluid approach
have been compared in a case without surface tension. This
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test case was useful because it can provide general trends
and differences without any source terms added in both
codes. These preliminary results highlighted a time shifting
in the dynamics, different growing rates and dynamics, but
the most amplified mode was roughly for the same wave-
number.

In addition, in order to be able to compute stratified
flows, surface tension effects had to be implemented in
NEPTUNE_CFD since the approach relies on a two-field
single pressure approach. A mass and a volume formula-
tion in respect of the force splitting within a control volume
have been proposed. Those two formulations did not pres-
ent significant differences for the Thorpe case. This imple-
mentation allowed the comparison with the results
obtained with the VOF approach. In those conditions,
the same time shifting phenomenon was still observed,
but the growing rates values were in better agreement
beyond the initial growing stage. In spite of this time shift-
ing, the time of onset of the dynamics still remained in
good agreement compared to the theory and Thorpe obser-
vations. In addition, the most amplified wave-number was
also well predicted by the multi-field method and its ampli-
tude was in rather good agreement between both
approaches. Concerning the time from which Thorpe
observed the stoppage of this wave growing, NEP-
TUNE_CFD even provided better results.

Future work will deal with the assessment of different
drag terms suited for separated flows in order to resolve
this time shifting, and also possibly to explain the more
important differences noted during zero surface tension
tests. However, the results showed it should the be possible
to get an acceptable description of complex stratified flows
involving surface tension effects with a general multi-field
code which is originally more suitable for dispersed flows.
Furthermore, the gain in terms of CPU time with NEP-
TUNE_CFD is very significant, probably because of the
time consuming geometric reconstruction algorithm used
for the VOF method.
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